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A Biologically Inspired Modular VLSI System for
Visual Measurement of Self-Motion

Charles M. Higgins and Shaikh Arif Shams

Abstract—We introduce a biologically inspired computational
architecture for small-field detection and wide-field spatial inte-
gration of visual motion based on the general organizing principles
of visual motion processing common to organisms from insects to
primates. This highly parallel architecture begins with two-dimen-
sional (2-D) image transduction and signal conditioning, performs
small-field motion detection with a number of parallel motion ar-
rays, and then spatially integrates the small-field motion units to
synthesize units sensitive to complex wide-field patterns of visual
motion. We present a theoretical analysis demonstrating the ar-
chitecture’s potential in discrimination of wide-field motion pat-
terns such as those which might be generated by self-motion. A
custom VLSI hardware implementation of this architecture is also
described, incorporating both analog and digital circuitry. The in-
dividual custom VLSI elements are analyzed and characterized,
and system-level test results demonstrate the ability of the system
to selectively respond to certain motion patterns, such as those that
might be encountered in self-motion, at the exclusion of others.

Index Terms—Address event representation, analog VLSI, asyn-
chronous digital communication, biomimetic, self-motion, spatial
integration, visual motion.

I. INTRODUCTION

ONE OF THE most fundamental computations that can be
performed on a visual image sequence is the detection of

motion. This primitive operation is so powerful that it is nearly
ubiquitous in modern biological organisms which have true vi-
sual systems [1], [2]. Comparisons of fossil eyes with modern
eyes suggest that it may be possible to trace motion detection
back through the evolutionary pathways as far as 400 million
years [61]. However, detection of visual motion by artificial sys-
tems is quite computationally intensive, requiring (in some form
or another) the comparison of image sequences at high resolu-
tion in very short amounts of time.

Biological organisms solve this computational problem with
a massively parallel continuous-time approach to small-field
motion detection. A large number of elementary motion detec-
tors (EMDs) operate in parallel on small portions of the image,
and the patterns of motion (or optical flow) are later integrated
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spatially to detect moving objects, compute a measure of depth
from motion parallax, estimate self-motion, and so forth.

This abstracted approach to visual motion processing is gen-
eral enough that it applies to organisms from insects to primates.
In fact, although the underlying neural hardware is certainly
quite different, the leading models describing elementary mo-
tion detection in insects [3] and primates [4] have been shown to
be mathematically equivalent. Similarly, a strong analogy can be
made between cells in the brain of a fly which spatially integrate
highly specific arrays of small-field motion detectors all over
the visual field (lobula plate tangential cells [5], [6]) and cells
in the brain of a monkey (in visual cortical area MST [7], [8]).
A strong hypothesis for the functional significance of all these
cells is that they are involved in the measurement of self-motion.

The impressive performance and efficiency of biological or-
ganisms in real-world environments motivates us to use their
underlying principles to design artificial systems. However, in
doing so, we must do more than blindly mimic their opera-
tion. Rather we must choose models which, like the motion pro-
cessing system described above, have been widely selected by
evolution and are more general than a particular organism.

In this paper, we introduce and analyze a computational ar-
chitecture for small-field detection and wide-field spatial inte-
gration of visual motion which is inspired by the principles of
the biological systems systems described above. A custom VLSI
implementation of this architecture is also presented and char-
acterized. We show how this compact hardware system might
be used in the visual estimation of the self-motion of a moving
platform, which is particularly valuable for small airborne or
underwater platforms that not only have very tight power and
weight constraints, but also for which ground speed is not nec-
essarily related to speed of movement through the air or water.

II. RELATED WORK

A. Computational Architecture

Extraction of self-motion information has been a topic of re-
search in the machine vision community for decades and has
generated volumes of research [9]–[14]; see [15] for a review.
While many algorithms exist for estimating heading direction
and other self-motion parameters, most rely on iteration and few
are suitable for efficient real-time hardware implementation.

Following the seminal work of Gibson [16], much effort in the
biological community has been dedicated to understanding how
organisms estimate their own motion in the world. Of particular
interest have been methods of estimating the heading direction
[17], closely related to the focus of expansion (FOE). Perrone
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et al.[18]–[20] have developed a detailed model of responses in
primate cortical area MST which is closely related to the com-
putational architecture presented here. Many similar models in
varying levels of detail have been proposed for area MST [21],
[8]. Franzet al. [22]–[24] have shown how to compute optimal
matched filters for estimation of self-motion from optical flow
and compared these filters to the patterns seen in fly tangential
neurons. Their optimal matched filters are completely compat-
ible with the present system.

A very similar architecture to the one described here has been
independently developed by Douglass and Strausfeld [25], [26]
based on the optic lobe organization of Dipteran insects. Their
computational system is very similar to the one described here,
but their study concentrates on the effects that details of EMD
function and innervation matrix composition have on the tuning
of the output to wide-field motion patterns, whereas the present
work is more concerned with the range of computations that are
possible with the architecture given a fixed set of simple EMDs
and innervation matrices.

B. Hardware Implementation

Because small-field visual motion processing is very well
matched to continuous-time fully parallel focal plane arrays, a
large number of monolithic integrated sensors of this type have
been fabricated [27]–[36] based on a variety of algorithms. An
extensive review of analog VLSI motion sensors can be found
in [37].

Integrated hardware attempts at self-motion processing have
only begun recently, with the work of Indiveriet al. [38].
The zero crossing in a one-dimensional (1-D) array of CMOS
velocity sensors was used to detect one component of the
focus of expansion. In a separate chip, the sum of a radial
array of velocity sensors was used to compute the rate of
flow field expansion, from which the time-to-contact can be
calculated. McQuirk [39] built a CCD-based image processor
which used an iterative algorithm to locate consistent stable
points in the image, and thus the focus of expansion. Higgins
and Koch [40] designed a monolithic chip to compute flow
field singular points, the function of which is subsumed by the
present system. More recently, Deutschmann and Wenisch [41]
have extended Indiveri’s work to two dimensions by summing
rows and columns in a two-dimensional (2-D) CMOS motion
sensor array and using software to detect zero crossings and
find the flow field singular point.

A growing number of multichip integrated hardware systems
have been designed to address vision and image processing
problems, a review of which can be found in [42]. Many of
these systems, including the present work, use asynchronous
digital communication techniques to transmit information
between chips. The origin of the asynchronous interchip
communications protocol used in the present work is in the
work of Mahowald [43], but the protocol has been formalized
and the performance greatly improved by Boahen [44], [45],
who designed and provided the circuitry used here.

In a related approach to the present work, Boahen [46] has
published a multichip vision processor that computes motion
by emulating a model of primate motion computation. The
photosensitive sender chip has four output channels per pixel,

Fig. 1. High-level vision system architecture. The image to be analyzed
is focused onto a photosensitive front end, which sends changing contrast
information to four parallel arrays of EMDs. The output of these motion
detectors is multiplied by innervation matrices (IMs) before being spatially
integrated to form the output of the system.

modeling on and off, sustained and transient responses to
light stimulation. By using a serial processor to combine the
outputs of channels from neighboring pixels in a receiver chip,
motion-sensitive outputs were synthesized. This system does
not address wide-field spatial integration of visual motion, but
rather synthesis of small-field motion-sensitive units with a
clever algorithm.

Another closely related project is the work of Indiveriet al.
[47], who have published a multichip motion system that
employs three stages of processing: a photosensitive sender
with nonlinear temporal differentiation, a programmable in-
terconnect processor (the Silicon Cortex [48]) that allows for
arbitrary address remapping, and a motion processing receiver.
The sender utilizes the same photoreceptor and nonlinear dif-
ferentiator used here, but splits the edge information from
rising and falling edges into two output channels, allowing
for independent sensitivity adjustment. The motion receiver
chip is based on the FS algorithm [49] which computes local
image velocity, unlike the direction-of-motion sensor used in
the present work. Again, this work does not address wide-field
spatial integration of motion.

Portions of the present work have been previously published
in thesis form [50].

III. D ESCRIPTION OF THEARCHITECTURE

The first processing stage of the architecture, diagrammed in
Fig. 1, is a 2-D focal plane array of phototransduction elements.
Each element in this stage transduces local light intensity from
an image focused onto it into a signal which can then be trans-
mitted to further stages. At each element, this stage includes
adaptation to the mean local light intensity. Only changes from
the local mean illumination are transmitted to the next stage.

The second stage includes multiple 2-D arrays of EMDs,
each of which receives the local contrast change information
from the first stage and computes a measure of local image
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motion. In the most trivial case, the multiple parallel motion
detector arrays are distinguished by differences in orientation
of the EMDs; however, these arrays could potentially differ
in speed tuning, spatial frequency tuning, or other properties
that could be spatially integrated to produce useful wide-field
measures of image motion.

The reason for duplication of motion arrays at this stage
is twofold. First, the motion computations carried out in this
stage need not interact and thus may be carried out efficiently
in parallel. Second, identical motion processors may be used in
this stage by appropriate manipulation of the image information
which they receive.

The final stage spatially sums the output of each EMD array
after multiplying with weighting matrices (called hereinnerva-
tion matricesafter Douglass and Strausfeld [25]) to synthesize
units which are tuned to specific position/orientation patterns of
wide-field optical flow. The innervation matrices may be (and in
general are) different for each EMD array due to the particular
properties of each. As Perroneet al.[18] have shown, these sets
of innervation matrices may be considered as templates for pat-
terns of desired wide-field motion, and the multiplication and
summing operation a correlation with these templates. Multiple
simultaneous sets of innervation matrices are supported, each
summed into a separate unit in the final stage. Thus, the final
stage unit with the largest value may be considered to represent
the template having the highest correlation with the input op-
tical flow pattern.

An additional function of the final stage is a soft thresholding
operation so that outputs above a certain numerical threshold are
emphasized, and outputs below this threshold are diminished.
This will allow simple discrimination of flow field types based
on template matching. For each set of innervation matrices, the
final stage produces a scalar number which indicates the thresh-
olded correlation with that template.

IV. THEORETICAL PREDICTIONS

In this section, we analyze the performance of the motion pro-
cessing architecture in distinguishing patterns of visual motion
using templates. Crucially, this analysis shows that optical flow
patterns which match the current template can be distinguished
from other patterns on the basis of the thresholded scalar system
output.

In order to simplify the following discussion, let us trivialize
the operation of the first and second stages by assuming that the
inputs to the system, rather than visual images that change over
time, areoptical flow fields: vector fields indicating local 2-D
image motion direction and speed. We will compute the output
of each element of the motion processor arrays as a function
of the local motion vector at its location. Let us also assume a
static flow field, that is, whatever pattern of wide-field motion
is present (e.g., expansion, contraction, rotation, or translation)
is maintained throughout the experiment.

Fig. 2 shows examples of the types of flow fields relevant for
self-motion. Flow fields such as expansion, contraction, and ro-
tation will be referred to asgeneralized spiralstimuli because
spiral optical flow patterns are made up of linear combinations

of these. Unlike pure translational flow patterns, generalized
spiral stimuli all have asingular pointdefined as a point where
flow field vectors pass through zero.

We will define the response of an elementary motion detector
(see Fig. 3) in terms of two parameters: the preferred direction

and the angular “bandwidth” . is the motion direction
at which the EMD responds maximally and also corresponds
to the angular centroid of motion tuning. is the angular ex-
tent around the preferred direction to which the EMD responds,
which we will take to have a maximum of 180 degrees. This
simple EMD model takes into account only the optical flow
vector angle, without regard to the speed of local image mo-
tion.1 If the local optical flow vector angle is , then the
EMD output may be expressed as

otherwise.

Leaving aside speed tuning, this simple EMD model captures
the essentials both of the hardware motion detector used in the
current implementation and of more advanced implementations
currently being developed.

In the discussion to follow, each of the four motion processor
arrays will be considered to have a different preferred direction
90 apart.

A. Centered Optical Flow Patterns

Let us now consider a template for centered expanding
motion such as might be encountered with a fixed translating
camera looking in the direction of heading [Fig. 2(a)].

Fig. 4 shows a simple binary set of innervation matrices
which would most closely match the response of this system to
centered expanding motion; Fig. 5 shows the response of the
system with these innervation matrices to various flow patterns.
Though we explore only binary innervation matrices both for
simplicity of theoretical discussion and for emulation of the
hardware system, the innervation matrices in general can be
signed real numbers.

Let there be by elements in each motion processor
array. If centered expanding motion is presented, each EMD
with nonzero innervation matrix entry will be activated, re-
sulting in a maximal response at the output of the final stage
of approximately

This quantity represents the element-by-element product of
each EMD array with its corresponding innervation matrix fol-
lowed by a spatial sum over all arrays to produce a single scalar
which will appear at the output of the system. The above quan-
tity is an approximation derived by assuming that the visual field
is circular and that the number of elementsis very large. The
first subscript ( for centered expansion) indicates the tuning of
the set of innervation matrices and the second subscript (again,

1Douglass and Strausfeld [25], [26] extensively address more complex EMD
models in a similar architecture.
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(a) (b)

(c) (d)

Fig. 2. Optical flow fields relevant for self-motion estimation. (a) Expansion, corresponding to translation of the camera in the direction the camera is pointing.
(b) Contraction, corresponding to translation away from the direction the camera is pointing. (c) Rotation, corresponding to rotation of the cameraabout an axis
normal to the focal plane. (d) Translation, corresponding to rotation of the camera about an axis parallel to the focal plane.

for centered expansion) indicates the type of pattern pre-
sented. For the purpose of comparison, let us define a baseline
quantity

which is the sum of a single innervation matrix. This value
comes from the fraction of all possible innervation matrix en-
tries which are unity. The output in response to a centered ex-
panding pattern may now be expressed as .

If centered contracting motion is presented (second subscript
), motion occursonly in areas which have zero innervation

matrix entries [see Fig. 5(b)], resulting in zero response

A centered rotational flow field (second subscript), in ei-
ther rotational direction, will activate areas of EMDs which are
90 out of alignment with the expansion innervation matrices
[Fig. 5(c)], resulting in zero response if is less than 90, and
a response of approximately

if is greater than 90.

Finally, pure translational motion (second subscript, ) in
any given direction will activate all EMDs oriented within
degrees of the stimulus angle [Fig. 5(d)]. If , either
one or none of the EMD arrays will be activated. The response
will be zero for stimulus angles more than from any of the
four preferred directions or

for directions within 90 of a preferred direction. If, however,
, more than one EMD array can be simultaneously

activated, resulting in a maximum response (at ) of

The results of this section are summarized in Table I. If we
compare the responses to these four flow field types with the
centered expansion template, we find the worst-case situation
for discrimination of these four flow field types occurs with

and results in the response to rotation and transla-
tion being half that of expansion, with the contraction response
being identically zero. In the best case, if , the response
to contraction and rotation are zero, and translation yields a
response of at most one quarter that of expansion. Thus, to
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Fig. 3. EMD tuning curve. The response of the EMD is plotted against
stimulus angle� . The response is unity in the range of local motion vector
angles� � � =2 < � < � + � =2 and zero otherwise. In the example
shown,� and� are both 90 degrees.

discriminate expansion from other centered pattern types, the
threshold in the final stage must be set in the worst case between
2 and 4 .

B. Optical Flow Patterns With Variable Singular Points

Let us now generalize our set of flow field types to allow non-
centered patterns. As mentioned earlier, our generalized spiral
stimuli (expansion, contraction, and rotation) each have a sin-
gular point, defined as a point where flow field vectors pass
through zero. In the case of expansion, this point is called the
focus of expansion (FOE). For rotatory flow fields, the singular
point is called the axis of rotation (AOR). No such singular point
exists in pure translatory fields, and thus our previous discus-
sion has handled those flow field types. If we continue to use
our centered expansion innervation matrix set and vary the FOE
and AOR of our flow fields, how will the system respond?

Let us first consider an expanding flow field pattern. As illus-
trated in Fig. 6(a), the maximal response occurs when the flow
field is centered, and thus aligned with the template

If the FOE moves to the far left edge of the visual field
[Fig. 6(b)], the left-oriented array is completely inactivated,
while the right-oriented array is fully activated. It can be shown
geometrically that, if , the up and down arrays are also
inactivated. As increases beyond 60, the activation of the
up and down arrays increases, and in the worst case the up and
down arrays are fully activated. Thus,

(worst case).

If the FOE is positioned in the upper left corner of the visual
field [Fig. 6(c)], the up and left arrays are completely inacti-
vated, and the activation of the down and right arrays depends
upon . It can be shown geometrically that if , no
EMDs with nonzero innervation matrix entries will be activated.
In the worst case ( ), the down and right arrays are fully
activated and thus

(worst case).

The response at the other edges and corners are the same by
symmetry. A plot of the worst-case output as the FOE is varied
over the entire visual field of the system is shown in Fig. 6(d).
The peak is clearly at the center where the flow field best
matches the template. In the best case, the corners of this plot
will reach zero. In the worst case, to match only a centered
expanding pattern the threshold of the final stage must be set
between 2 and 4 .

It is important in this case to consider a contracting stimulus
(Fig. 7) because the response with the centered expansion tem-
plate actuallyincreasesas the focus of contraction (FOC) moves
away from the center. If the FOC is centered [Fig. 7(a)], there
is no overlap between activated EMDs and nonzero innervation
matrix entries, resulting in a zero system response

However, if the FOC moves to the left edge of the visual field
[Fig. 7(b)], the left-oriented EMD array is activated in areas with
nonzero innervation matrix entry, and the system response is
proportional to . In the worst case ( ), we have

With the FOC in the upper left corner of the visual field
[Fig. 7(c)], both up and left-oriented innervation matrices may
have activated EMDs. If , there is no response in this
case. In the worst case ( ), these two innervation
matrices are fully activated and thus

A plot of the worst case output as the FOC is varied over the en-
tire visual field of the system is shown in Fig. 7(d). The lowest
value is in the center where the flow field is orthogonal to the
template. Values rise away from the center, with a maximum
of 2 in the worst case. Thus, to discriminate a centered ex-
panding pattern from all other contracting and expanding pat-
terns, the threshold of the final stage must be set between 2
and 4 .

Let us now consider rotatory flow fields. With the AOR
aligned with the expansion template [Fig. 8(a)], zero response
is obtained as long as is less than 90 degrees. In the worst
case ( ), two innervation matrices are fully activated
and thus

With the AOR at the left edge of the visual field, the up-oriented
innervation matrix is inactivated, the down- and left-oriented
innervation matrices are activated proportional to, and the



HIGGINS AND SHAMS: BIOLOGICALLY INSPIRED MODULAR VLSI SYSTEM 513

Fig. 4. Template for expanding motion,� = 90 . This set of binary “innervation matrices” yields a maximal response when the pattern of motion spatially
correlates. Above each panel is indicated the preferred direction� of the EMD array: 0, 90 , 180 , and 270 corresponding, respectively, to rightward, upward,
leftward, and downward motion. The 2-D extent of each panel represents the visual field of the system. Gray indicates unity innervation matrix value;all other
entries are zero. The arrows indicate the flow field pattern which would maximally stimulate this innervation matrix.

right-oriented innervation matrix is activated only for
. In the worst case ( ), we have

Finally, with the AOR in the upper left corner of the visual field,
the up- and right-oriented innervation matrices are inactivated,
the left-oriented matrix is activated in proportion to, and the
down-oriented matrix is activated for . In the worst
case ( ), we have

Therefore, the maximum response for rotatory flow fields using
the centered expansion template is 2. In fact, for ,
the output as the AOR is varied over the entire visual field is
constant at 2 .

Comparing the results for all three flow field types in this
section, summarized in Table II, it is clear that we may set our
threshold between 2 and 4 in order to discriminate cen-
tered expanding flow from other flow field types even if the sin-
gular points are allowed to vary. This is the same threshold value
suggested for centered optical flow patterns.

C. Other Templates

Our entire discussion so far has assumed an innervation
matrix set tuned for centered expansion. With the exception

of translation, it is very easy to extend our results for other
template types.

Templates for noncentered expansion provide much the same
response as that for centered expansion. The same thresholds
and values apply, allowing us to use multiple simultaneous tem-
plates for expansion and take the maximum to estimate a crude
focus of expansion. Templates for contraction are orthogonal to
those for expansion, but otherwise provide very similar results
with contraction and expansion responses reversed. The output
for templates tuned to rotation are again very similar, but the re-
sults cited for expansion and contraction now apply to rotation
and vice versa. In all of the above cases, the same threshold may
be used to discriminate the optical flow field pattern to which the
innervation matrix set is tuned from other patterns.

In the case of a template for translation, however, some spe-
cial consideration is required. Let us consider the particular case
of a leftward-tuned innervation matrix set. This innervation ma-
trix is unity over the entire visual field of the array of EMDs
oriented in the leftward direction and zero elsewhere. Thus, for
translatory optical flow patterns, the response is

with equality for

for stimulus angles within of the leftward direction, and
zero otherwise.

However, in the case of expanding optical flow the sum of
the leftward-oriented EMD array reflects how many EMDs are
activated, which is monotonically dependent on the position of
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(a) (b)

(c) (d)

Fig. 5. Response of centered expansion template to four elementary types of motion,� = 90 . The 2-D extent of each panel represents the visual field of
the system. Gray areas indicate nonzero innervation matrix values. Arrows indicate the response of the EMD array to the given flow field pattern. Above each
panel is indicated the preferred direction� of the EMD array. (a) Expansion: maximal response; each responsive EMD has a corresponding nonzero matrix entry.
(b) Contraction: zero response; no correlation with pattern. (c) Rotation: zero or weak response. (d) Translation: weak response.

TABLE I
SUMMARY OF FINAL STAGE OUTPUT WITH A CENTERED EXPANSION

TEMPLATE IN RESPONSE TOCENTERED OPTICAL FLOW PATTERNS.
A THRESHOLD BETWEEN 2S AND 4S IS SUFFICIENT TO

DISTINGUISH EXPANDING PATTERNS FROM ALL OTHERS

the FOE (see Fig. 9). If the FOE is to the far left, no leftward
motion will be observed and thus the response is zero. If the
FOE is to the far right, approximately

EMDs will be activated. Between these two FOE positions,
the number of EMDs activated varies in proportion to the dis-
tance of the FOE from the left side. If the FOE moves up or
down in the visual field, the modulation of the output is much
less, decreases as increases, and the output does not vary at
all for vertical FOE movements if .

The similarity in response between leftward translation and
expansion with the FOE at the far right is not artificial. In fact,
with , the leftward EMD array response to these two
flow field types is identical.

Thus, for a leftward translatory template presented with an
expanding flow field pattern, the output of the system mono-
tonically reflects the position of the FOE. In the special case
of , the output is linearly proportional to the hor-
izontal FOE position and is independent of the vertical FOE
position. An upward-tuned template can likewise compute the
vertical FOE position. We have written earlier about this fact
[40] and used it to build a monolithic hardware system to com-
pute optical flow singular points. With a simple set of calcula-
tions, the output of this system can also compute the singular
point of rotating flow fields, as well as spiral flow fields made
from a combination of expansion, contraction, and rotation.
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(a) (b)

(c) (d)

Fig. 6. Response of centered expansion template to expanding motion with variable FOE,� = 90 . The 2-D extent of panels (a)-(c) represents the visual field
of the system. Gray areas indicate nonzero innervation matrix values. Arrows indicate the response of the EMD array to the given flow field pattern. (a) O :
FOE aligned with template. (b)O : FOE at left edge. (c)O : FOE at upper left corner. (d) Plot of worst case response with� = 180 as the FOE is varied
over the entire visual field. The 2-D extent of this panel represents the position of the FOE in the visual field. The plot has been scaled toS .

The results of this section are summarized in Table III. In
order to fulfill the purpose of discriminating a translatory flow
field type from other types, it is necessary in general to set the
final stage threshold lower than 2 . Because this threshold is
different from that required by other flow field types, in practical
application we willdoublethe response from each EMD in this
template, allowing us to set our threshold at a level comparable
to the other template outputs: between 2 and 4 . This is
mathematically equivalent to setting each nonzero innervation
matrix entry in the set tuned for translation totwo instead of
one.

V. IMPLEMENTATION DETAILS

The hardware implementation of the motion processing
architecture is based on modular mixed-signal VLSI building
blocks connected with a high-speed asynchronous digital
communications bus. In direct contrast to a monolithic VLSI
system, the individual components of this multichip system are
meant to be reusable in different configurations. In addition,
manipulation of communications on the bus can be used to

achieve “virtual wiring” [51], [42] which cannot be practically
achieved in conventional VLSI technology.

The interchip communications protocol used in this work is
known as the address-event representation (AER). The original
and most basic form of AER utilizes two digital control lines
and several digital address lines to interface a sender chip to
a receiver chip, as shown in Fig. 10. The protocol is used to
communicate the occurrence of a binary “event” from sender
to receiver in continuous time. A four-phase asynchronous
handshake between sender and receiver guarantees reliable
communication between chips; the address lines communicate
the spatial position of a requesting sender pixel to the receiver
chip, which forward the event to the receiver pixel with the
same spatial position.

This protocol effectively allows any sender pixel to commu-
nicate digital events to the corresponding receiver pixel. Be-
cause requests can come at any time from any pixel in the array,
it is necessary to use an arbitration scheme on the sender to
serialize simultaneous events onto the single communications
bus. Because the asynchronous protocol operates so quickly (on
nanosecond scales) relative to the timescale of visual stimuli
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(a) (b)

(c) (d)

Fig. 7. Response of centered expansion template to contracting motion with variable FOC,� = 90 . The 2-D extent of panels (a)–(c) represents the visual field
of the system. Gray areas indicate nonzero innervation matrix values. Arrows indicate the response of the EMD array to the given flow field pattern. (a) O :
FOC aligned with template. (b)O : FOC at left edge. (c)O : FOC at upper left corner. (d) Plot of worst case response with� = 180 as FOC is varied
over the entire visual field. The 2-D extent of this panel represents the position of the FOC in the visual field. Plot has been scaled toS .

(on millisecond scales), the serialization caused by sharing of
a single digital bus is usually benign for sensor applications.
Various schemes exist for deciding which of several simulta-
neously requesting sender pixels is allowed to use the bus first
[43], [52]–[54]. The scheme used in this paper is a binary tree
arbiter [45], which yields a quick decision and scales well to
large array sizes.

The circuitry necessary to implement the protocol varies from
scheme to scheme. The particular hardware implementation of
AER used in this chipset has been devised by Boahen; refer to
[45] for further details. The AER bus in this implementation
has a maximum bandwidth around 2.2 MHz, with a request-
acknowledge cycle occurring about every 450 ns.

The first stage of the implementation (see Fig. 11) is a
photosensitive sender chip, which transduces changes in light
intensity into moving edge information. This edge information is
sent through a bank of EPROMs which rotate the address space
so that each of the identical second-stage motion transceiver
chips has a different rotated view of the edges generated.
Because each transceiver chip computes 1-D motion at a

fixed orientation in its address space, this address rotation
gives each a different orientation in visual space. The motion
computed by the transceivers is sent out to the third stage.
Motion information from all of the transceivers is combined
in a routing processor which sends this information to a final
integrating receiver chip which simply converts its input into
a voltage which can be read out of the system. This system
combines the programmability implied by the EPROMs and
the routing processor mapping function with the high speed
and low power consumption of custom VLSI chips.

A. Photosensitive Sender Chip

The sender chip provides a visual front end for all further
processing. This chip detects moving contrast edges in an image
focused directly upon it. Edge locations are communicated
off-chip via the AER bus. Qualitatively, the output of this
chip looks like an image filtered in real-time with an spatial
edge-enhancing operator; however, the edges disappear when
no motion is present. A very similar chip has been described
and characterized in detail in an earlier paper [42].
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(a) (b)

(c)

Fig. 8. Response of centered expansion template to rotatory motion with variable AOR,� = 90 . The 2-D extent of each panel represents the visual field of
the system. Gray areas indicate nonzero innervation matrix values. Arrows indicate the response of the EMD array to the given flow field pattern. (a)O : AOR
aligned with template. (b)O : AOR at left edge. (c)O : AOR at upper left corner. Worst-case response with� = 180 yields a constant output of 2S
as the AOR is varied over the entire visual field.

TABLE II
SUMMARY OF FINAL STAGE OUTPUT WITH A CENTERED EXPANSION

TEMPLATE IN RESPONSE TOOPTICAL FLOW PATTERNS WITH VARIABLE

SINGULAR POINTS. A THRESHOLDBETWEEN 2S AND 4S IS SUFFICIENT

TO DISTINGUISH CENTEREDEXPANDING PATTERNS FROM ALL OTHERS

The core of the sender chip is a 1412 array of sender pixels.
See Fig. 12 for a layout diagram. Each sender pixel contains
an adaptive photoreceptor [55] and a nonlinear differentiator
circuit [49] interfaced to the interchip communication circuitry.
This combination of adaptive photoreceptor and nonlinear
differentiator is sensitive only to sudden changes in light
intensity, and is referred to as atemporal edge detector, with

the assumption that a sudden change in local intensity is due
to a passing spatial edge. When an illumination edge passes
over the pixel, the event is communicated to the receiver. In
this implementation, events are communicated on the bus only
when the illumination changes, resulting in an efficient use
of bus bandwidth. Arbitration, address encoding, and other
interface circuitry to support the protocol are located in the
periphery and described in [45]. The chip also incorporates
a serial scanner for readout of the raw photoreceptor image.

The photoreceptor circuit (shown in Fig. 13(a) and analyzed
in detail by Delbrück and Mead [55]) adapts to the local light
intensity on slow time scales (a few seconds), allowing high
sensitivity to transient changes over a wide range of illumination
without a change in bias settings. The nonlinear differentiator
circuit (shown in Fig. 13(b) and analyzed in detail by Krameret
al. [49]) produces a current pulse whenever the photoreceptor
output changes suddenly. This circuit is nonlinear in the sense
that it produces a fairly narrow (1–10 ms) current pulse at the
change of the derivative sign [56] both for sharp and smooth
inputs, due to the nonlinear feedback. The amplitude of the
current pulse from this circuit can be shown to be proportional
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Fig. 9. Response of leftward translatory template to expanding motion with
variable FOE,� = 180 . The 2-D extent of the figure represents the position
of the FOE in the visual field. The response of the system linearly indicates the
position of the FOE. If� = 180 (as in this example), the response linearly
indicates the horizontal FOE position independent of the vertical FOE position.
Plot has been scaled toS .

TABLE III
SUMMARY OF FINAL STAGE OUTPUT WITH A LEFTWARD TRANSLATION

TEMPLATE. A THRESHOLD OF2S IS SUFFICIENT IN MOST CASES TO

DISTINGUISH TRANSLATING PATTERNS FROM ALL OTHERS

to temporal contrast, the product of stimulus speed and spatial
contrast [33].

The sender pixel communications interface circuit (modified
from [45]) is shown in Fig. 14. Its input current is taken from
the nonlinear differentiator circuit output. Under normal AER
bus load conditions, this circuit generates a event rate linearly
proportional to the current input .

The input current from the differentiator circuit will only ex-
ceed the threshold set by for a few milliseconds after a
sudden illumination change. If the pixel request is not serviced
within this time, the request will be withdrawn. For this reason,
a slowdown in bus activity will not cause a large buildup of un-
serviced events. During the time that the interface circuit input
current is sufficiently large, the pixel will communicate a burst
of events to the corresponding receiver pixel the rate and du-
ration of which is dependent upon the temporal contrast of the
stimulus.

The average power consumption of the sender chip is only
3.8 mW even at high bus usage due to the short duration of each
request.

B. Motion Transceiver

The purpose of the motion transceiver chip is to receive edge
information, compute local 1-D motion, and transmit this infor-
mation in the form of a train of events to the next stage. Both

(a)

(b)

Fig. 10. AER protocol summary. (a) The model for AER transmission
is shown: a sender chip communicates with a receiver chip via request,
acknowledge and address lines. (b) The handshaking protocol for transmission
using the above control and address lines is shown: a request with a valid
address leads to an acknowledgment, which in turn leads to falling request and
falling acknowledge.

receiver and sender peripheral circuitry are present on this chip
(Fig. 15), taking up a significant proportion of the available area.

The core of the transceiver chip is a 1212 array of pixels.
Each pixel contains both receiver and sender communications
interface circuitry, and a motion circuit implementing the in-
hibit-trigger-inhibit (ITI) direction-of-motion algorithm [33].

The receiver pixel communications interface circuit (modi-
fied from [45]) is shown in Fig. 16. A current, the magnitude
of which is controlled by the bias , is produced to charge
the capacitor only when both and are active high. The
biases and allow adjustable low-pass filtering of the
input current to produce the complementary voltage signals
and after amplification by a series of CMOS inverters.

The ITI motion algorithm (shown in Fig. 17 and analyzed
in detail in [33]) computes the direction of a moving edge by
detection of the order of edge arrival at neighboring pixels. It
requires the inputs from both left and right transceiver
chip neighbors, as well as the from the current pixel. The
voltage signal is “triggered” (raised to the upper voltage
supply) by the arrival of a local edge, and “inhibited” (lowered
to ground) by the arrival of an edge to the left. The signal is
also triggered by local edge arrival, but inhibited by an edge to
the right. Both signals have an adjustable leak to ground ()
so that the motion signals detected have a variable persistence
time. These two binary voltage signals together unambiguously
encode the direction of edge motion in one dimension across the
sensor: when they are the same, no motion has been detected.
When they aredifferent, the direction of motion is indicated by
which one is high. Thus the numerical difference of these two
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Fig. 11. Overall hardware architecture of motion processor system. Gray arrows indicate AER address buses. The EPROM for zero-degree rotation is notrequired
in this configuration and is included for generality only. The C-element is a device built from discrete logic to provide synchronization of all four transceivers to
the single sender. The address multiplexer is used to reduce the pin count into the routing processor; connections from the processor to the multiplexer are not
shown for simplicity. The routing processor is currently implemented with a microcontroller, but can be replaced by a much more efficient FPGA (see text).

Fig. 12. Layout of the sender chip, as fabricated on a MOSIS tiny chip in
a 1.2-�m standard CMOS process. Total area of the chip is 2.1� 2.1 mm .
Inside the padframe at the periphery to the top and left is scanner circuitry
for observation of pixel activity. At the periphery to the bottom and right is
arbitration and address encoding circuitry to support the AER protocol. The
core of the chip contains a 14� 12 array of pixels.

voltage signals is computed by further circuitry in the form of
a bidirectional current, which goes on to the sender interface
circuitry.

Because this circuit implements a “direction-of-motion” al-
gorithm, it responds with a nearly constant positive current to
1-D motion having a component in the direction of its orienta-
tion for nearly 180 of stimulus angle. Thus, its output closely

resembles the output of the prototypical EMD from Fig. 3 with
.

The sender communications interface circuit is shown in
Fig. 18 and contains one additional element from that shown
for the sender chip. The input current from the ITI motion
circuit is added to a constant current controlled by so
that both positive and negative excursions of the ITI circuit
output current can be represented in event frequency. This
“spontaneous” activity of the spiking circuit continues when
no motion is present and serves as a baseline around which
increases and decreases can occur.

Under medium bus load conditions, each transceiver chip
consumes a static power of less than 5 mW at 5 V.

C. Integrating Receiver

The integrating receiver chip (Fig. 19) contains a 2729
array of pixels, each of which serves the purpose of converting
event frequency into dc voltage. The periphery of the chip con-
tains AER interface circuitry for decoding addresses and dis-
tributing events to individual pixels, as well as serial scanner
circuitry which allows individual access to the output voltage of
each pixel.

The entire circuit for the receiver pixel is shown in Fig. 20.
The receiver interface is identical to that shown earlier for the
transceiver chip, integrating the train of events into a voltage

. With the use of the transistor, this value can
be scanned out of the chip as a current. The bias is
provided to allow multiplication of the output current to a
convenient level.

In order to analyze the behavior of this circuit, let us assume
that it has a constant input from the AER bus with event fre-
quency and pulse width . Each time an event is received, a
“quantum” of charge is delivered to the node. If the
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(a)

(b)

Fig. 13. Components of the temporal edge detector. (a) Adaptive
photoreceptor which allows sensitivity to transient contrast changes
over a wide range of illuminations. (b) Nonlinear differentiator circuit which
responds only to sharp changes in illumination.

Fig. 14. Sender pixel communications interface circuitry.R andA are
the interface with the row arbiter, andD goes to the column circuitry.

Fig. 15. Layout of the transceiver chip, as fabricated on a MOSIS tiny chip
in a 1.2-�m standard CMOS process. Total area of the chip is 2.1� 2.1 mm .
Inside the padframe at the periphery to the top and left are address decoding
and other circuits implementing an AER receiver interface. At the periphery to
the bottom and right are address encoding and arbiter circuits implementing an
AER sender interface. The core of the chip is a 12� 12 array of pixels.

Fig. 16. Transceiver pixel receiver communications interface circuitry. When
inputsX andY are both active high, digital signalsV andV are
activated.

transistor is operating in the subthreshold regime, the current
during the time that is low (assuming is much less
than ) is

(where is the subthreshold model parameter relating changes
in gate voltage to changes in channel surface potential) and the
total charge delivered is

With a fixed event frequency, we can compute the average cur-
rent tending to raise the potential of as
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(a)

(b)

Fig. 17. Transceiver pixel circuits implementing the ITI
(Inhibit-Trigger-Inhibit) motion algorithm. (a) Computation of the direction
of motion by order of edge arrival. (b) Production of a bidirectional output
current from the direction information.

Fig. 18. Transceiver pixel sender communications interface circuitry.R

and /ACK are the interface with the row arbiter, andD goes to the column
circuitry.

The dc current tending to lower the potential of is
provided by the transistor and can be computed in sub-
threshold as

Fig. 19. Layout of the receiver chip, as fabricated on a MOSIS tiny chip in
a 1.2-�m standard CMOS process. Total area of the chip is 2.1� 2.1 mm .
Inside the padframe at the periphery to the bottom and left is scanner circuitry
for readout of pixel activity. At the periphery to the top and right is address
decoding circuitry to support the AER protocol. The core of the chip contains a
27� 29 array of pixels.

Fig. 20. Receiver pixel circuitry. When inputsX andY are both active
high, current is provided to the nodeV . Based on the biasesV andV
an adjustable threshold may be set so thatV goes high when the input event
frequency is greater than the threshold.

Thus, the net average current to the node is

where and are constants for fixed pulse width and
bias conditions. If this net current is positive, the potential of
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(a)

(b)

Fig. 21. Theoretical receiver pixel performance. (a) Infinite number of events
at each frequency. (b) Finite number of events at each frequency; curves for four
different event counts are plotted. The sharpness of the threshold increases with
the number of events received.

will rise with each event and eventually saturate near
. For a net negative current, the potential will fall with each

event and saturate near . Thus given an infinite number
of events, the output of the circuit [Fig. 21(a)] is a binary
comparison of the input event frequency with a threshold event
frequency

which would make the net current exactly zero. This frequency
is affected both by biases and .

Let us now consider a more realistic case [Fig. 21(b)] in which
a finite number of events arrives at a given event frequency.
If the event frequency is very far from the threshold, will
still saturate at one of the rails. However, if the event frequency
is close to the threshold, the potential will change less. If we

assume that is allowed to leak down to between
each stimulus presentation, we can expect a significantly softer
thresholding operation to be performed for a finite number of
events. In fact, the sharpness of the thresholding operation is
proportional to .

Under medium bus load conditions, the receiver chip con-
sumes a static power of less than 3 mW at 5 V.

D. System-Level Hardware Details

The board on which all of the above components were com-
bined is shown in Fig. 22. The sender chip is at left underneath
a camera lens which serves to focus an image of the stimulus
upon it. The rest of the board is spatially layed out much like
Fig. 11.

To reduce power consumption, the EPROMS are held in
standby mode until a request is generated by the sender chip.
Because they are only active for the period that the request line
is high, their power consumption depends upon the amount of
activity on the AER bus, and thus average power consumption
is quite low. Because of the use of CMOS components for the
C-element and address multiplexer, the discrete logic circuitry
on the board draws power only when changing states and thus
also has a low average power consumption.

In order to implement the desired spatial motion integration
algorithm through binary innervation matrices, the routing
processor (currently a microcontroller running at 33 MHz) is
programmed to receive events from each of the transceivers
and transmit only selected ones from a preprogrammed map
to specified units on the receiver chip. The summing operation
is performed implicitly by integration of the combined train of
events arriving at any receiver pixel. For example, to implement
a given set of binary innervation matrices, any event arriving
from a transceiver pixel with nonzero innervation matrix entry
would be sent to a given receiver pixel. This pixel converts the
total event rate at its input into a voltage, with no knowledge of
the origin of each individual event, thus reflecting the desired
sum. No sequential logic is required to perform this task, and
thus an EPROM might implement the routing processor to
support asingle setof innervation matrices.

However, if multiple sets of innervation matrices are to be
simultaneously supported, a sequential processor is required.
For example, to implement simultaneous expansion and rotation
innervation matrices, a single transceiver event might be sent
on to as many as two different receiver pixels. In general, to
implement sets of innervation matrices, the AER bus at
the output of the routing processor may send out as many as

events for a single transceiver event. While a sequential
processor is required, the full complexity of a microcontroller is
not. As Häfliger [57] has shown, an asynchronous FPGA may
be used to implement this function quite efficiently. However,
in whatever manner the routing processor is implemented, it
represents a significant bottleneck in the system.

By clever selection of the wide-field motion templates that are
simultaneously implemented, it is possible to minimize the bus
slowdown out of the routing processor. For example, innervation
matrices for expansion and contraction are completely nonover-
lapping, yielding no bus slowdown when implemented simulta-
neously. Clockwise and counterclockwise rotation are similarly
nonoverlapping. When expansion, contraction, and both direc-
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Fig. 22. Wirewrap board implementation of the spatial motion integration
system. The sender chip is to the lower left covered by a camera lens. The
rest of the board is layed out like Fig. 11 with, from left to right, columns of
EPROMs and transceivers, the microcontroller, and the receiver chip.

tions of rotation are implemented simultaneously, there are only
twice as many events out of the routing processor as come in.

VI. EXPERIMENTAL RESULTS

Unlike the theoretical EMDs analyzed in Section IV, the
hardware implementation requires moving images to be visually
presented in order to produce motion outputs. In order to
demonstrate the performance of our hardware system most
clearly, we presented sequences of images such as expanding
circles, rotating wagon wheels, and moving bars which generate
optical flow patterns similar to those which might be generated
in simple self-motion situations.

Computer-generated image sequences were presented on an
LCD screen for reduced flicker. A compound lens was used
to focus an image of the LCD screen onto the photosensitive
sender chip. Stimuli presented include those shown in Fig. 23.
The singular point (axis of rotation or focus of expansion)
of each generalized spiral stimulus (expansion, contraction,
rotation) could be moved around a rectangular grid covering
the entire visual field of the chip. The output of the system
was obtained from an appropriate number of receiver chip
pixels through serial scanners.

(a)

(b)

(c)

Fig. 23. Visual stimuli presented to the self-motion system. (a) Expanding (or
contracting) circles. (b) Rotating “wagon wheel.” (c) Translating bar grating.
The large box in (a) and (b) indicates the visual field of the chip, around which
the singular point could be moved.

Because full characterization of even one configuration of this
system requires quite a lot of data, we focus on a single rather
complex configuration. We support eight sets of innervation
matrices, simultaneously synthesizing units on the receiver chip
tuned for expansion, contraction, both directions of rotation,
and four directions of translation. In this experiment, the bias

is set to zero so that the motion transceiver EMDs
produce no output when not sensing motion and respond
positively for motion in their preferred direction. This makes
the EMD tuning curve look very much like our prototypical
EMD from Fig. 3 with . For this reason, each
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(a)

(b)

Fig. 24. Experimental results from board-level hardware system. Eight templates are simultaneously implemented: expansion, contraction, clockwise (CW)
rotation, counterclockwise (CCW) rotation, and the four cardinal directions of translation. Shown are the responses of all eight templates to generalized spiral
motion patterns with variable singular points. The spatial extent of each data figure corresponds to the position of the singular point in the visual field of the system.
Brighter shading indicates stronger responses. (a) Expanding stimulus. (b) Contracting stimulus. (Continued in Fig. 25.)

generalized spiral innervation matrix covers exactly half of its
associated transceiver chip. Translational units sum the outputs
from one entire transceiver chip. To make the threshold for the
translation-tuned units comparable to that of the generalized
spiral-tuned units (as explained in Section IV), it is necessary to
send two events to each receiver chip translational unit for every
one received from the corresponding transceiver chip. When
all eight types of pattern are simultaneously implemented, the
routing processor produces four times as many events as the
transceivers transmit.

The output of each of the eight receiver chip units is shown in
Figs. 24 and 25 for a full set of generalized spiral stimuli with
singular points located in a regular grid around the visual field.
The receiver chip threshold is set so that the each unit can clearly
distinguish the flow field type for which it is tuned not only
from other flow field types, but also from the same flow field
type with a significantly displaced singular point. Note that, as
predicted in Section IV-C, the translation-tuned units respond to
the generalized spiral stimuli at specific extreme singular point
locations. This is due to the fact that, as the singular point of
any of the generalized spiral patterns approaches the edge of

the visual field, it becomes indistinguishable (to sensors with
) from a pure translational pattern. For example, in

an expanding pattern with FOE on the left edge of the visual
field, every motion vector has a component of motion within
180 of pure rightward translation. This fact yields the response
on the left edge of the zero-degree-tuned unit in Fig. 24(a). The
effects of receiver pixel mismatch are visible in the differences
between the shape of the various responses.

Fig. 26 shows responses of all eight units to translating
patterns. The generalized spiral stimuli show no significant
response to these patterns. The translation-tuned units respond
in the direction of their tuning over nearly 180of stimulus
angle.

VII. D ISCUSSION

We have presented a computational architecture which has
the ability to simultaneously correlate the visually presented
pattern of wide-field motion with a number of templates ex-
pressed in the form of sets of innervation matrices.

The purely feedforward model presented has been shown to
discriminate wide-field optical flow patterns of expansion, con-
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(a)

(b)

Fig. 25. Experimental results from board-level hardware system. Eight templates are simultaneously implemented: expansion, contraction, clockwise (CW)
rotation, counterclockwise (CCW) rotation, and the four cardinal directions of translation. Shown are the responses of all eight templates to generalized spiral
motion patterns with variable singular points. The spatial extent of each data figure corresponds to the position of the singular point in the visual field of the system.
Brighter shading indicates stronger responses. (a) CW rotating stimulus. (b) CCW rotating stimulus. (Continued from Fig. 24.)

traction, translation, and rotation with a fixed threshold. For
smaller EMD bandwidths (particularly ), discrimina-
tion is made considerably easier by the fact that many patterns
which do not match the template produce no response at all. In
the worst case ( ), there is only a factor of two between
outputs corresponding to matching and nonmatching stimuli.

Because the presented architecture is linear up to the point of
the thresholding operation, these optical flow patterns can also
be detected when presented in linear combination, as in more re-
alistic self-motion scenarios. This ability would allow a moving
camera system to identify the kind of motion it is currently un-
dergoing. However, our discussion in this paper does not address
the speed of such motion because speed tuning in our EMDs was
left out for simplicity. In any implementation, the speed of the
moving pattern does of course play a role in the output of the
system. The response of this system would be graded in speed
in the same way that the EMDs themselves are, allowing a less
binary estimation of self-motion parameters.

In a self-motion application, a sensor of this type would
produce multiple simultaneous outputs continuously indicating
the correlation of the current wide-field motion pattern with the
prescribed set of templates. The choice of template set is clearly

key to the functional usefulness of this system, and must be
made based both on thespecific platformon which the sensor
will reside and thetypes of self-motionwhich are important to
detect. These choices would be quite different, for example,
between terrestrial and airborne platforms. With a modest set of
carefully chosen templates, a simple maximum operation would
allow a computation of the most likely self-motion within the
given possibilities; the value of this maximum is proportional to
the certainty of the self-motion classification. A more complex
set of templates together with a linear combination of template
outputs could also estimate continuous parameters of platform
motion such as heading direction and translation velocity.

The spatial resolution required for practical application of the
proposed system to self-motion estimation would depend on the
spatial environment of the platform and the speed at which it
must move. High spatial resolution is clearly required to resolve
small moving objects at large distances from the imager, which
would be required for a high-speed airborne platform. However,
a terrestrial robot moving relatively slowly in a indoor environ-
ment would have much less stringent requirements. The number
of motion templates required and their complexity would de-
pend similarly on the specific problem.
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Fig. 26. Experimental results from board-level hardware system. Eight
templates are simultaneously implemented: expansion, contraction, clockwise
(CW) rotation, counterclockwise (CCW) rotation, and four cardinal directions
of translation. Shown are the responses of all eight templates to translational
motion patterns with the direction of translation varied 360. Plot has been
scaled toS .

The possible applications of this system extend well beyond
self-motion estimation. Spatial integration of smaller regions
of motion with inhibition from wide-field units could be
used to implement localized detectors that respond only to
small moving targets [58]. By making specialized patterns of
connections between small-field motion units, small moving
targets may be acquired and tracked [59]. By addition of
subtractive as well as additive inputs to the integration stage,
the signal-to-noise ratio could be increased by adding to each
innervation matrix negative entries where there are presently
zeros [26]. In addition, it would be possible to implement a
“center-surround” motion field by subtracting from each mo-
tion output the activation of its neighbors such that only motion
discontinuitiesare highlighted in the final stage. Further, if the
innervation matrix pattern were allowed to change dynamically,
it would be possible to tune the pattern of desired motion to a
specific target as it moves across the visual field.

We have also shown a mixed-signal custom VLSI hardware
implementation of the computational architecture presented
above, and demonstrated its ability to discriminate wide-field
spatial patterns of visual motion including expansion, contrac-
tion, rotation, and translation which are relevant to self-motion.
The precision with which the implementation can discriminate
flow fields is limited by the nearly 180width of the direction
tuning of the EMDs used. As the theoretical discussion showed,
an EMD with narrower would allow a larger difference in
system output between matching and nonmatching patterns.

This system allows the real-time processing of visual motion
with modest requirements for power, weight, and physical size.
Because the custom VLSI building blocks are employed in a
multichip architecture, the system possesses reconfigurability
(embodied in the EPROMs and routing processor) superior to
a monolithic implementation. While a significant number of
individual components make up the system, each operates with
very low average power consumption largely because electrical
operation is asynchronouslydata driven, not synchronously
clock driven like conventional serial computer implementations.
The physical size and weight of the present board is driven by
standard 40-pin DIP packages on the VLSI components which
could be easily replaced with more space-efficient packages.
Currently, commercial EPROMs are employed, but an EPROM
could simply be integrated into each motion transceiver chip.
Similarly, the address multiplexing logic could be integrated
into a custom routing processor, resulting in a much more phys-
ically compact system. Further, even better performance could
be achieved at the cost of some flexibility by implementing the
entire system on a single chip [60]. This would improve speed,
reduce power consumption, and attenuate many noise issues.
In such a monolithic implementation, the AER bus could still
be used to achieve “virtual wiring.”

Because of the fully parallel implementation strategy used in
all of the custom VLSI elements, increasing the pixel resolution
to more practical values requires only duplication of existing
processor elements. Power consumption will scale sublinearly
from the values given as the number of elements increases due
to power consumption by peripheral circuitry which does not
grow, or grows slowly, as resolution increases. The resolution
of the current system is driven only by what can be fit onto a
MOSIS “tiny chip.” With the current pixel design, systems with
a spatial resolution of more than 128 by 128 pixels are realizable
through MOSIS.

The implementation of eight templates for generalized spiral
and translational spatial patterns of motion is meant to clearly
demonstrate the capabilities of the present system, but will not
lead to the best possible performance in estimation of self mo-
tion in real-world scenes. Better performance can certainly be
achieved with the more involved “optimal” template set derived
by Franzet al. [22] or by using sets of patterns as suggested by
the work Duffy and Wurtz [8].

The primary limitation of the current implementation is
the routing processor, implemented at present with a micro-
controller. It is the only clocked component of the system
and draws considerably more power than the nonclocked
components. Together with its clock generation circuitry, it
draws 208 mW at 5 V. Because its operation is rather slow
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compared to the operation of the asynchronous digital elements
in the system, the speed at which it can produce events on the
receiver bus limits the number of simultaneous units that can be
synthesized by the system. The event rate at this juncture is not
very high relative to the AER bus bandwidth, and thus an FPGA
implementation [57] would certainly improve the speed at this
bottleneck and allow system performance to be improved.
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